The Antirheumatic Drug Gold, a Coin With Two Faces: AU(I) and AU(III). Desired and Undesired Effects on the Immune System
نویسندگان
چکیده
Three new findings are reviewed that help to understand the mechanisms of action of antirheumatic Au(I) drugs, such as disodium aurothiomalate (Na(2)Au(I)TM): (i) We found that Na(2)Au(I)TM selectively inhibits T cell receptor (TCR)-mediated antigen recognition by murine CD(4+) T cell hybridomas specific for antigenic peptides containing at least two cysteine residues. Presumably, Au(I) acts as a chelating agent forming linear complexes (Cys-Au(I)-Cys) which prevent correct antigen-processing and/or peptide recognition by the TCR. (ii) We were able to show that Au(I) is oxidized to Au(III) in phagocytic cells, such as macrophages. Because Au(III) is re-reduced to Au(I) this may introduce an Au(I)/Au(III) redox system into phagocytes which scavenges reactive oxygen species, such as OCl(-) and inactivates lysosomal enzymes. (iii) Pretreatment with Au(III) of a model protein antigen, bovine ribonuclease A (RNase A), induced novel antigenic determinants recognized by CD(4+) T lymphocytes. Analysis of the fine specificity of these 'Au(III)-specific' T cells revealed that they react to RNase peptides that are not presented to T cells when the native protein, i.e., not treated with Au(III), is used as antigen. The T cell recognition of these cryptic peptides did not require the presence of gold. This finding has important implications for understanding the pathogenesis of allergic and autoimmune responses induced by Au(I) drugs. Taken together, our findings indicate that Au(I) and Au(III) each exert specific effects on several distinct components of macrophages and the subsequent activation of T cells; these effects may explain both the desired anti-inflammatory and the adverse effects of antirheumatic gold drugs.
منابع مشابه
Investigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
متن کاملInvestigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
متن کاملAu Nanoparticle Loaded with 6-Thioguanine Anticancer Drug as a New Strategy for Drug Delivery
In this study we suggested a new strategy for drug delivery of 6-thioguanine (6-TG) as a cancer drug by loading of this thiolic drug at a surface of Au nanoparticles. For this goal, we synthesized Au nanoparticle (Au/NPs) by reduction of tetrachloroauric (III) acid solutions by sodium borohydride and characterized Au/NPs by X-ray powder diffraction (XRD), dynamic light scattering (DLS), Ultravi...
متن کاملHydroxyl capped silver-gold alloy nanoparticles: characterization and their combination effect with different antibiotics against Staphylococcus aureus
Objective(s): Metal nanoparticles (NPs) offer a wide variety of potential applications in pharmaceutical sciences due to the unique advances in nanotechnology research. In this work, bimetal Ag-Au alloy NPs were prepared and their combinations with other antibiotics were tested against Staphylococcus aureus. Materials and Methods: Firstly, Ag-Au alloy NPs with Au/Ag molar ratio of 1:1 was f...
متن کاملIron-gold (Fe2O3@Au) core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance
Introduction: Photothermal therapy (PTT) is a nanotechnology-assisted cancer hyperthermia approach in which the interaction between laser light and plasmonic nanoparticles generates a localized heating for thermoablation of the tumor. Recent efforts in the area of PTT follow two important aims: (i) exploitation of targeting strategies for preferential accumulation of plasmonic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Metal-Based Drugs
دوره 1 شماره
صفحات -
تاریخ انتشار 1994